

Applied College

Web and Mobile Application Development Program

1531-CIS
Introduction to Programming

Prepared by Ahmed Asiri

1331-CSA
Introduction to Computer Programming

1

Chapter 1

Introduction

 Programming Languages

Programming languages are broadly classified into three levels: machine languages,

assembly languages, and high-level languages.

Machine language is the only programming language the CPU understands. Each type of

CPU has its own machine language. Machine-language instructions are binary-coded and

very low level, binary codes (0 and 1)—one machine instruction may transfer the contents

of one memory location into a CPU register or add numbers in two registers. Thus, we must

provide many machine-language instructions to accomplish a simple task.

One level above machine language is assembly language, which allows “higher-level”

symbolic programming. Instead of writing programs as a sequence of bits, assembly

language allows programmers to write programs by using symbolic operation codes. For

example, instead of 10110011, we use MV to move the contents of a memory cell into a

register.

High-level languages were developed to enable programmers to write programs faster than

when using assembly languages. For example, JAVA; a programming language intended for

mathematical computation, allows programmers to express numerical equations directly as

X = (Y + Z) / 2

Definitions

program: A set of instructions that are to be carried
out by a computer.

program execution: The act of carrying out the
instructions contained in a program.
– this is done by feeding the instructions to the CPU

programming language: A systematic set of rules
used to describe computations, generally in a
format that is editable by humans.

2
1

Java
There are hundreds of high level computer

languages. Java, C++, C, Basic, Fortran,
Cobol, Lisp, Perl, Prolog, Eiffel, Python

The capabilities of the languages vary
widely, but they all need a way to do

– declarative statements

– conditional statements

– iterative or repetitive statements

A compiler is a program that converts
commands in high level languages to
machine language instructions

Java is a new object-oriented language that is receiving wide attention from both industry

and academia. The language was based on C and C++ and was originally intended for writing

programs that control consumer appliances such as toasters, microwave ovens, and others.

Java is often described as a Web programming language because of its use in writing

programs.

A Simple Java Program

public class Hello

{ public static void main(String[] args)

 { System.out.println("Hello World!");

 }

}

3
2

More Definitions

code or source code: The sequence of

instructions in a particular program.

– The code in this program instructs the computer to print a

message of Hello, world! on the screen.

output: The messages printed to the computer

user by a program.

console: The text box or window onto which output

is printed.

Compiling and Running

Compiler: a program that converts a program in
one language to another language
– compile from C++ to machine code

– compile Java to bytecode

Bytecode: a language for an imaginary cpu

Interpreter: A converts one instruction or line of
code from one language to another and then
executes that instruction
– When java programs are run the bytecode produced by

the compiler is fed to an interpreter that converts it to
machine code for a particular CPU

– on my machine it converts it to instructions for a Pentium
cpu

4
3

Structure of Java programs

public class <name> {

public static void main(String[] args) {

<statement(s)>;

}

}

Every executable Java program consists of a
class...
– that contains a method named main...

• that contains the statements to be executed

The previous program is a class named
Hello, whose main method executes one
statement named System.out.println

Static methods
static method: A group of statements that is given a name

so that it can be executed in our program.
– Breaking down a problem into static methods is also called

"procedural decomposition."

Using a static method requires two steps:
– declare it (write down the recipe)

• When we declare a static method, we write a
group of statements and give it a name.

– call it (cook using the recipe)

• When we call a static method, we tell our main method
to execute the statements in that static method.

Static methods are useful for:
– denoting the structure of a larger program in smaller, more

understandable pieces

– eliminating redundancy through reuse

5
4

Static method syntax
The structure of a static method:

public class <Class Name> {

public static void <Method name> () {

<statements>;
}

}

Example:

public static void printCheer() {

System.out.println(“Three cheers for Pirates!");

System.out.println(“Huzzah!");

System.out.println(“Huzzah!");

System.out.println(“Huzzah!");

}

Static methods example
public class TwoMessages {

public static void main(String[] args) {

printCheer();

System.out.println();

printCheer();

}

public static void printCheer() {

System.out.println(“Three cheers for Pirates!");

System.out.println(“Huzzah!");

System.out.println(“Huzzah!");

System.out.println(“Huzzah!");

}

}

Program's output:

Three cheers for Pirates!

Huzzah!

Huzzah!

Huzzah!

Three cheers for Pirates!

Huzzah!

Huzzah!

Huzzah!

6
5

Methods calling each other
One static method may call another:
public class TwelveDays {

public static void main(String[] args) {

day1();

day2();

}

public static void day1() {

System.out.println("A partridge in a pear tree.");

}

public static void day2() {

System.out.println("Two turtle doves, and");

day1();

}

}

Program's output:

A partridge in a pear tree.

Two turtle doves, and

A partridge in a pear tree.

Control flow of methods
When a method is called, a Java program 'jumps'

into that method, executes all of its statements, and

then 'jumps' back to where it started.
public class TwelveDays {

public static void main(String[] args) {

day1();

day2();

}

}

public static void day1() {

System.out.println("A partridge in a pear tree.");

}

public static void day2() {

System.out.println("Two turtle doves, and");

day1();

}

7
6

Identifiers
identifier: A name that we give to a piece of data

or part of a program.

– Identifiers are useful because they allow us to refer to

that data or code later in the program.

– Identifiers give names to:

• classes

• methods

• variables (named pieces of data; seen later)

The name you give to a static method is an

example of an identifier.

– What are some other example identifier we've seen?

Details about identifiers
Java identifier names:

– first character must a letter or _ or $

– following characters can be any of those characters or a number

– identifiers are case-sensitive; name is different from Name

Example Java identifiers:

– legal:olivia second_place _myName

TheCure ANSWER_IS_42 $variable

– illegal: me+u :-) question?

side-swipe hi there ph.d

belles's 2%milk

kelly@yahoo.com

Variable Example

class Example2 {

public static void main(String args[]) {

int var1; // this declares a variable

8
7

int var2; // this declares another variable

var1 = 1024; // this assigns 1024 to var1

System.out.println("var1 contains " + var1);

var2 = var1 / 2;

System.out.print("var2 contains var1 / 2: ");

System.out.println(var2);

}

}

Predicted Output:

var2 contains var1 / 2: 512

The above program uses two variables, var1 and var2. var1 is assigned a value directly while var2 is

filled up with the result of dividing var1 by 2, i.e. var2 = var1/2. The words int refer to a particular

data type, i.e. integer (whole numbers).

9
8

In order to make a running program, the developed class must contain a

particular method:

the "main" method is the entry point into the program: the microprocessor

knows it will start executing instructions from this place.

public static void main(String arg[])

 {

 …/…

 }

Comments

In addition to the instructions for computers to follow, programs contain comments in which

we state the purpose of the program, explain the meaning of code, and provide.

Any other descriptions to help programmers understand the program. Here’s the comment in the sample

the following program:

 /*
Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java
*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args)

{ JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program"); myWindow.setVisible(true);
}
}

/*
This is a comment with
three lines of
text.

10
9

*/

// This is a comment
// This is another comment
// This is a third comment

/* This is a comment on one line */

/*
 Comment number 1
*/
/*
 Comment number 2
*/

Java - Variable Types
A variable provides us with named storage that our programs can manipulate. Each
variable in Java has a specific type.
Following is the basic form of a variable declaration:

data type variable [= value][, variable [= value] ...] ;

Example:

int a, b, c; // Declares three integer, a, b, and c.
int a = 10, b = 10; // Example of initialization
byte B = 22; // initializes a byte type variable B.
double pi = 3.14159; // declares and assigns a value of PI.
char a = 'a'; // the char variable a is initialized with value 'a'

11
10

12
11

13
12

❖ Standard input and output in Java

The print method is used to output a value.

Example:

System.out.print(“King Khalid University”);

Output: King Khalid University

14
13

15
14

16
15

17
16

18
17

Chapter 2

 Control Structure (Conditional/selection and looping Statements)

Following is the syntax of the if statement.

if (condition)

{

// code

}

And here is a small code snippet which displays the message "Hi" only if the value of the boolean

variable “wish” is true.

if (wish == true)

{

System.out.println("Hi");

}

19
18

Following is the syntax of if else structure.

if (condition)

{

// code

}

else

{

// code

 }

And here is an example usage which states whether a number is an even number or an odd number.

Even numbers are divisible by zero and hence leave a remainder of zero. The remainder on dividing

the number by two can be obtained using the modulo (%) mathematical operator.

if (num%2==0)

{

System.out.println("Number is even");

}

Else

{

System.out.println("Number is odd");

}

If statement:
There are two versions of the if statement, called if–then–else and if–then. We begin with the first

version. Suppose we wish to enter a student’s test score and print out the message You did not pass

if the score is less than 70 and You did pass if the score is 70 or higher. Here’s how we express this

logic in Java:

20
19

Mapping of the sample if–then–else statement to the general format:

21
20

22
21

Nested if statements

23
22

More example (student grade using nested if statement):

Switch statement

Given below is the syntax of the switch structure in Java.

switch (expression)

{

case value1:

 // code

break;

case value2:

 // code

 break;

 ...

24
23

 ...

case valueN:

 // code

break;

 ...
Given below is an example which prints the day of the week based on the value stored in the int

variable num.

1 stands for Sunday, 2 for Monday and so on:

int day = s.nextInt; // s is a Scanner object connected to System.in

String str; // stores the day in words

switch(day)

{

case 1:

 str="Sunday";

 break;

case 2:

 str="Monday";

 break;

case 3:

 str="Tuesday";

 break;

case 4:

 str="Wednesday";

 break;

case 5:

 str="Thursday";

 break;

case 6:

 str="Friday";

 break;

25
24

case 7:

 str="Saturday";

 break;

default:

 str=" Invalid day";

}

System.out.println(str);

...

default:

 // code

 break;

}

Looping statements:

The for loop syntax

for (initialization; condition; increment/ decrement)

{

// body

}

The following code prints the numbers from 1 to 10 using a for loop.

for (int i=1; i<=10; i++)

{

System.out.println(i);

}

The while loop syntax

Following is the syntax of the while loop.

The statements in the while block are executed as long as the condition evaluates to true.

while (condition)

{

26
25

// code

}

Consider the following code snippet which is used to print the statement "KKU" thrice on the screen.

int ctr = 0;

while (ctr < 3)

{

System.out.println("KKU");

ctr++;

}

The following code is used to add the numbers from 1 to 100.

int ctr = 1;

sum = 0;

while (ctr<=100)

{

 sum = sum + ctr;

 ctr++;

}

Syntax of do while loop

do {

 // code

}

while (condition);

Following code uses the do while loop to print "KKU" thrice on the screen.

int ctr = 0;

do {

 System.out.println("KKU");

 ctr++;

} while (ctr < 3);

27
26

COMPUTER PROGRAMMING-2 JAVA

C H A P T E R - 7
A R R A Y S & C O L L E C T I O N S

Java provides a data structure, the array, which stores a fixed-size sequential collection of
elements of the same type. An array is used to store a collection of data, but it is often more
useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you
declare one array variable such as numbers and use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables.

This tutorial introduces how to declare array variables, create arrays, and process arrays
using indexed variables.

DECLARING ARRAY VARIABLES

To use an array in a program, you must declare a variable to reference the array, and you
must specify the type of array the variable can reference. Here is the syntax for declaring an
array variable −

SYNTAX

dataType[] arrayRefVar; // preferred way.
or
dataType arrayRefVar[]; // works but not preferred way.

Note − The style dataType[] arrayRefVar is preferred. The style dataType arrayRefVar[]
comes from the C/C++ language and was adopted in Java to accommodate C/C++
programmers.

EXAMPLE

The following code snippets are examples of this syntax −

double[] myList; // preferred way.
or
double myList[]; // works but not preferred way.

CREATING ARRAYS

You can create an array by using the new operator with the following syntax −

1 Mrs.Anamika Raj,Lecturer,KKU

28

Chapter 3

27

COMPUTER PROGRAMMING-2 JAVA

SYNTAX

arrayRefVar = new dataType[arraySize];

The above statement does two things −

• It creates an array using new dataType[arraySize].
• It assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to
the variable can be combined in one statement, as shown below −

dataType[] arrayRefVar = new dataType[arraySize];

Alternatively you can create arrays as follows −

dataType[] arrayRefVar = {value0, value1, ..., valuek};

The array elements are accessed through the index. Array indices are 0-based; that is, they
start from 0 to arrayRefVar.length-1.

EXAMPLE

Following statement declares an array variable, myList, creates an array of 10 elements of
double type and assigns its reference to myList −

double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and the
indices are from 0 to 9.

2 Mrs.Anamika Raj,Lecturer,KKU

29
28

COMPUTER PROGRAMMING-2 JAVA

ARRAY OF OBJECTS

Following is the definition of Student class.

class Student {
 int marks;
}

An array of objects is created just like an array of primitive type data items in the following
way.

Student[] studentArray = new Student[7];

The above statement creates the array which can hold references to seven Student objects.

MULTI DIMENSIONAL ARRAYS

We have represented an array type using a pair of brackets. Two dimensional arrays are in
a similar way represented by two such pairs of brackets and an N dimensional array is
represented by using N such pairs of brackets. The following statement creates a two
dimensional array of integers, which contains 3 arrays containing 4 integers each.

int[][] a=new int[3][4];

Elements of this array are accessed by specifying the index numbers, here two of them. The
first representing the array number and the second representing the index element in that
particular array.

a[0][2] = 34;

A two dimensional airy can also be initialised using an array initialiser in the following way.
This paints a better picture of a 2D array as an array of arrays.

int[][] d = { { 1,5,74,2}, {4,68,45,65},{5,0,34,54}}:

THE FOREACH LOOPS

JDK 1.5 introduced a new for loop known as foreach loop or enhanced for loop, which
enables you to traverse the complete array sequentially without using an index variable.

EXAMPLE

3 Mrs.Anamika Raj,Lecturer,KKU

30
29

COMPUTER PROGRAMMING-2 JAVA

PASSING ARRAYS TO METHODS

Just as you can pass primitive type values to methods, you can also pass arrays to methods.
For example, the following method displays the elements in an int array −

EXAMPLE

public static void printArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }
}

You can invoke it by passing an array. For example, the following statement invokes the
printArray method to display 3, 1, 2, 6, 4, and 2 −

EXAMPLE

printArray(new int[]{3, 1, 2, 6, 4, 2});

LISTS & MAPS

LIST INTERFACE

A List is a ordered collection that can contain duplicate values. It provides three general
purpose implementations.

1) ArrayList
2) LinkedList
3) Vector

1) ARRAYLIST

ArrayList is said to be the best performing list implementation in normal conditions. In
simple words we can say that ArrayList is a expendable array of values or objects.
package com.beingjavaguys.core;

import java.util.ArrayList;

public class ArrayListImplementation {

 public static void main(String args[]){

4 Mrs.Anamika Raj,Lecturer,KKU

31
30

COMPUTER PROGRAMMING-2 JAVA

 ArrayList<String> arrayList = new ArrayList<String>();

 arrayList.add("element1");
 arrayList.add("element2");
 arrayList.add("element3");
 System.out.println(arrayList);

 arrayList.remove("element3");
 System.out.println(arrayList);
 }
}

2) LINKEDLIST

Linked list is a bit slower than ArrayList but it performs better in certain conditions.

3) VECTOR

Vector is also a growable array of objects, but unlike ArrayList Vector is thread safe in
nature.
Map Interface

A Map interface provides key-value pairs, map objects contains keys associated with an
value. Maps can not contain duplicate keys and one key can be mapped to atmost one
element. In Java Map interface provides three general purpose implementations.

1) HashMap- A HashMap is a HashTable implementation of Map interface, unlike
HashTable it contains null keys and values. HashMap does not guarantees that the order of
the objects will remain same over the time.
2) TreeMap- A TreeMap provides red-black tree based implementation of Map interface.
3) LinkedHashMap- It is HashTable and LinkedList implementation of Map interface.
LinkedHashMap has a double-linkedList running through all its elements.

5 Mrs.Anamika Raj,Lecturer,KKU

32
31

1

Chapter 4: Classes and Objects

What is Object Oriented Programming?

- OBJECT-ORIENTATION is a set of tools and methods that enable

software engineers to build reliable, user friendly, maintainable, well

documented, reusable software that fulfills the requirements of its

users.

- A software system is seen as a community of objects that cooperate

with each other by passing messages in solving a problem.

 Benefits of OO programming

– Easier to understand (closer to how we view the world)

– Easier to maintain (localized changes)

– Good level of code reuse (inheritance)

33

2

OOP consists of the following features (Concepts):

Inheritance:

Inheritance is the process of forming a new class from an existing class

or base class.

Inheritance helps in reducing the overall code size of the program, which

is an important concept in object-oriented programming.

Data Abstraction:

 Data Abstraction represents the needed information in the program

without presenting the details.

Data Encapsulation:

Data Encapsulation combines data and functions into a single unit called

Class. When using Data Encapsulation, data is not accessed directly; it

is only accessible through the functions present inside the class.

Data Encapsulation enables the important concept of data hiding

possible.

Polymorphism:

Polymorphism is the capability of a method to do different things based

on the object that it is acting upon.

34

3

What Is an Object?

- An object represents an entity (thing) in the real world that can be

distinctly identified.

- For example:

 a student, a desk, a circle, a button… can all be viewed as objects.

- An object has a unique identity state, and behaviors.

- The state of an object consists of a set of data fields (also known as

properties) with their current values.

- The behavior of an object is defined by a set of methods.

- An object is called an instance of a class.

35

4

Classes in Java

 A class is a template that describes the data and behavior associated

with instances of that class.

 A Java class uses variables to define data fields and methods to define

behaviors.

 A class provides a special type of methods, known as Constructor

which are invoked to construct objects from the class.

Syntax of creating Class:

- A class definition starts with the keyword class followed by the class

name.

- The class body contains the (Data fields) , (Constructors), and

(methods) enclosed by curly braces.

 class classname

{

 Data fields (Variables)

 Constructors

 Methods

}

36

5

Declaring an object

Syntax

ClassName objectName;

e.g., Student myStudent;

Creating an object

objectName = new className();

e.g., myStudent = new Student();

Declaring/Creating Objects in a Single Step using java

 ClassName objectName = new ClassName();

e.g., Student myStudent = new Student();

37

6

Accessing Objects

- Members are accessed using the dot(.) operator.

- you must write its object’s name followed by dot sign(.) and the

names of its members (data or Method).

• Referencing the object’s data:

 Objectname.data

e.g., myStudent.stNumber

• Invoking the object’s method:

ObjectName.methodName(arguments)

 e.g., myStudent.getNumber()

38

7

Example1:

Write Java program as described below:

Create a Student class which has two data members: id and name.

Print the data member values by creating an object s1 from Student class.

class Student

{

 int id =5;

 String name= "Fatima"; /

}

public class program1

 {

 public static void main(String[] args)

{

 Student s1=new Student(); //creating an object of Student

 System.out.println(s1.id);

 System.out.println(s1.name);

 }

}

Output

Example(2)

Example2:

5

Fatima

39

8

More about Data Fields

Data fields: data variables which determine the status of the class or

an object.

 Field Declaration

 As shown in the previous example, data afield is declared

by adding Datatype name followed by the field name,

and optionally an initialization clause.

 Example: int EmpID =1234;

 field declarations can be preceded by different modifiers

 access control modifiers

 static

 final

40

9

41

10

Methods

A Java method is a collection of statements that are grouped together to

perform an operation.

42

11

Method Calling

 To execute a method, you simply call the method by typing object name

followed by dot operator (.) followed by method name and then follow the

name with a set of parentheses.

 You can call the same method multiple times.

 calling methods usually occur inside other methods like main method.

 When a method runs, the compiler jumps to where the method is defined,

executes the code inside of it, then goes back and proceeds to the next line.

 The following example demonstrates how the method is declared and then called:

Example 1

Write JAVA program as described below:

1. Create a class named MyClass, with sayHello method to display (Hello world!) on the

screen.

2. Invoke(call) the sayHello() method by creating an object p1 from MyClass class.

 Output:

Hello World!

43

12

The following example demonstrate how the method can be called many times as

necessary:

Example 2:

Write JAVA program as described below:

1. Create a class named MyClass, with sayHello method to display (Hello world!) on the

screen.

2. Invoke the sayHello() method 3 times by creating an object p1 from MyClass class.

Output:

Hello World!

Hello World!

Hello World!

44

13

Method Parameters

 You can also create a method that takes some data, called parameters

 Write parameters within the method's parentheses.

For example, we can modify our sayHello() method to take a String parameter.

Output:

The void keyword

When you do not need to return any value from a method, (like methods in the above

examples) we usually use the keyword void.

The return keyword

The return keyword can be used in methods to return a value.

Hello Mona

Hello Ahmed

45

14

46

15

Constructors

Constructors are a special kind of methods that are invoked to perform

initializing actions.

Student (int newNumber) {

StNumber = newNumber;

}

 A constructor with no parameters is referred to as: default

constructor.

 Constructors must have the same name as the class itself.

 Constructors do not have a return type—not even void.

 Constructors play the role of initializing objects.

47

16

48

17

49

18

Call one constructor inside another one.

50

1

Chapter 5

Inheritance & polymorphism

Part1: Inheritance

 Inheritance is the ability to define a new class in terms of an existing class.

o The existing class is the (parent, base or superclass).

o The new class is the (child, derived or subclass)

 The child class inherits all the attributes and behavior of its parent class.

o It can then add new attributes or behavior.

 Inheritance is therefore another form of code reuse

 Use keyword extends for inheritance.

Syntax

51

2

Example1: Program that illustrates inheritance in java using Animal class

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

Public class Test{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}

}

Output:

barking...

eating...

52

3

Types Of Relationships in Object Oriented Programming (OOP)

Association

 Association is a relationship between two objects.

 Example: A Student and a Faculty are having an association.

Aggregation

 Aggregation is a special case of association.

 When an object „has-a‟ another object, then you have got an aggregation between them.

 Aggregation is also called a “Has-a” relationship.

Composition

 Composition is a special case of aggregation.

 Example of aggregation and composition

 A Library contains students and books.

 Relationship between library and student is aggregation.

 Relationship between library and book is composition.

 A student can exist without a library and therefore it is aggregation.

 A book cannot exist without a library and therefore it is a composition.

53

4

Generalization

 Generalization uses a “is-a” relationship from a specialization to the generalization.

 At a very broader level you can understand this as inheritance.

 Generalization is also called a “Is-a” relationship.

 Example: Consider there exists a class named Person.

A teacher is a person. Therefore, here the relationship between teacher and person, is

generalization.

Dependency

 Change in structure or behavior of a class affects the other related class, then there is a

dependency between those two classes.

 Example: Relationship between shape and circle is dependency.

 Dependency

shape

circle

54

5

Part 2: Polymorphism

What is polymorphism in programming?

Polymorphism is the capability of a method to do different things based on the object that it is

acting upon.

The polymorphism concept can be achieved using:

1) Method Overloading

2) Method Overriding

1) Method Overloading

Two or more methods in the class can have the same name but their argument lists are

different.

This concept is known as Method Overloading.

Argument lists could differ in –

1. Number of parameters.

2. Data type of parameters.

3. Sequence (Order) of Data type of parameters

55

6

 Example 1: Overloading – Number of parameters

class Sum

 {

 public void add(int a, int b)

 {

 System.out.println(a+b);

 }

 public void add(int a, int b, int c)

 {

 System.out.println(a+b+c);

 }

 }

public class Sample

 {

 public static void main(String args[])

 {

 Sum obj = new Sum ();

 obj.add(3,4);

 obj.add(2,5,7);

 }

 }

Output:

In the above example – method add() has been overloaded based on the number of

parameters. We have two definition of method add(), one with two parameters and another

with three parameters.

7
14

56

7

Example 2: Overloading – Data type of parameters

class DisplayOverloading2

{

 public void disp(char c)

 {

 System.out.println(c);

 }

 public void disp(int c)

 {

 System.out.println(c);

 }

}

public class Sample2

{

 public static void main(String args[])

 {

 DisplayOverloading2 obj = new DisplayOverloading2();

 obj.disp('a');

 obj.disp(5);

 }

}

Output:

In the above example – method disp() is overloaded based on the data type of parameters – Like

example 1 here also, we have two definition of method disp(), one with char parameter and another

with int parameter.

a
5

57

8

Example3: Overloading – Sequence (Order) of data type of parameters

class DisplayOverloading3

 {

 public void disp(char c, int num)

 {

 System.out.println(c+ ” “ + num);
 }

 public void disp(int num, char c)

 {

 System.out.println(num + “ “+ c);
 }

 }

public class Sample3

 {

 public static void main(String args[])

 {

 DisplayOverloading3 obj = new DisplayOverloading3();

 obj.disp('x', 51);

 obj.disp(52, 'y');

 }

}

Output:

X 51

52 y

Here method disp() is overloaded based on sequence of data type of parameters – Both the

method have different sequence of data type of parameters.

58

9

2) Method overriding.

 Declaring a method in subclass which is already present in parent class is known as

method overriding.

 Advantage of method overriding

 The main advantage of method overriding is that the class can

give its own specific implementation to an inherited method

without even modifying the parent class(base class).

59

10

 Example:

 One of the simplest example – Here Boy class extends Human class. Both

the classes have a common method void eat(). Boy class is giving its own

implementation to the eat() method or in other words it is overriding the

method eat().

class Human{

public void eat()

{

System.out.println("Human is eating.");

}

}

public class Boy extends Human {

 public void eat(){

System.out.println("Boy is eating.");

}

public static void main(String rgs[]) {

 Boy obj = new Boy();

 obj.eat();

}

}

Output:

Boy is eating.

60

11

Super keyword in Overriding.

 super keyword is used for calling the parent class method/constructor.

super.methodname() calling the specified method of base class

while super() calls the constructor of base class.

Let’s see the use of super in Overriding.

class ABC{

public void mymethod()

{

System.out.println("Class ABC: mymethod()");

}

}

class Test extends ABC{

 public void mymethod(){

//This will call the mymethod() of parent class

super.mymethod();

System.out.println("Class Test: mymethod()");

 }

public static void main(String args[]) {

 Test obj = new Test();

 obj.mymethod();

}

 }

Output:

Class ABC: mymethod()

Class Test: mymethod()

61

12

Types of polymorphism in java-

There are two types of polymorphism in java:

1. Runtime polymorphism (Dynamic polymorphism)

- Method Overriding is a perfect example of runtime polymorphism.

2. Compile time polymorphism (static polymorphism).

- Method Overloading is a perfect example of runtime polymorphism.

62

1

Chapter 6

Abstract Classes ,Interfaces, and Encapsulation

Abstract Classes
A class which cannot be instantiated is known as abstract class. In other

words – you are not allowed to create object of Abstract class.

Abstract class declaration

Specifying abstract keyword before the class during declaration, makes it

abstract class.

Have a look at below code:

abstract class AbstractDemo{

public void myMethod(){
//Statements here
}

}

Abstract vs Concrete

A class which is not abstract is referred as Concrete class.

Abstract methods

Apart from having abstract class you can have abstract methods as well.

Syntax of abstract method:

public abstract void display();

Points to remember about abstract method:

1) Abstract method has no body.

2) Always end the declaration with a semicolon(;).

3) It must be overridden.

• An abstract class must be extended and in a same way abstract method

must be overridden.

4) Abstract method must be in a abstract class.

Note: The class which is extending abstract class must override (or implement)

all the abstract methods.

63

2

Example of Abstract class and method

abstract class Demo1

{

 public void disp1(){
 System.out.println("Concrete method of abstract class");
 }

 abstract public void disp2();

}

class Demo2 extends Demo1{

public void disp2()

 {

 System.out.println("I'm overriding abstract method");

 }

public static void main(String args[]){

 Demo2 obj = new Demo2();

obj.disp2();

}

}

Output:

I'm overriding abstract method

64

3

Interface in JAVA

Declaration

Interfaces are created by specifying a keyword “interface”. E.g.:

interface MyInterface

 {

 //All the methods are public abstract by default

 public void method1();

public void method2();
 }

class XYZ implements MyInterface

 {

 public void method1()

 {

 System.out.println("implementation of method1");

 }

 public void method2()

 {

 System.out.println("implementation of method2");

 }

 public static void main(String arg[])

 {

 MyInterface obj = new XYZ();

 obj. method1();

 }

 }

Output:

implementation of method1

65

4

Key points:

1. While providing implementation of any method of an interface, it

needs to be mentioned as public.

2. Class implementing any interface must implement all the methods.

3. Interface cannot be declared as private, protected or transient.

4. All the interface methods are by default abstract and public.

5. Variables declared in interface are public, static and final by default.

interface Try
{

int a=10;

public int a=10;

public static final int a=10;

 final int a=10;

static int a=10;

}

 All the above statements are identical.

6. Interface variables must be initialized at the time of declaration otherwise compiler will

through an error.

interface Try
{

int x;//Compile-time error

}

Above code will throw a compile time error as the value of the

variable x is not initialized at the time of declaration.

7. Inside any implementation class, you cannot change the variables declared in interface

because by default, they are public, static and final.

66

5

Class Sample implements Try
 {
 public static void main(String arg[])
 {
 x=20; //compile time error
 }
 }

8. Any interface can extend any other interface but cannot implement it. Class implements

interface and interface extends interface.

9. A class can implements any number of interfaces.

10. If there are having two or more same methods in two interfaces and a class implements

both interfaces, implementation of one method is enough.

interface A
 {

 public void aaa();
 }

interface B
 {
 public void aaa();
 }

class Central implements A,B
{

public void aaa()
 {
 //Any Code here
 }
public static void main(String arg[])
 {
 //Statements
 }

}

67

6

11. Variable names conflicts can be resolved by interface name e.g:

 interface A
 {
 int x=10;
 }

 interface B

 {

 int x=100;
 }

class Hello implement A,B
 {
 public static void Main(String arg[])
 {

 System.out.println(A.x);

System.out.println(B.x);
 }

 }

Interface and Inheritance

As I discussed above that one interface can not implement another interface. It

has to extend the other interface if required.

See the below example where I have two interfaces Inf1 and Inf2. Inf2 extends

Inf1 so If class implements the Inf2 it has to provide implementation of all the

methods of interfaces Inf1 and Inf2.

public interface Inf1

 {

 public void method1();

 }

 public interface Inf2 extends Inf1

 {

 public void method2();
 }

public class Demo implements Inf2

{

 public void method1(){
//Implementation of method1
}
public void method2(){
//Implementation of method2
}

}

68

7

Benefits of having interfaces: Following are the benefits of interfaces:

1. achieve the security of implementation.

2. In java, multiple inheritance is not allowed, However by using
interfaces you can achieve the same .

69

8

Encapsulation in Java

What is encapsulation?

 The whole idea behind encapsulation is to hide the

implementation details from users.

 If a data member is private it means it can only be accessed

within the same class.

 No outside class can access private data member (variable) of

other class.

 However if we setup public getter and setter methods to update

the private data fields then the outside class can access those

private data fields via public methods.

 This way data can only be accessed by public methods thus

making the private fields and their implementation hidden for

outside classes. That’s why encapsulation is known as

data hiding.

70

9

 Lets see an example to understand this concept better.

public class EncapsulationDemo{

 private int ssn;
private String empName;
private int empAge;

//Getter and Setter methods
 public int getEmpSSN() {

return ssn;
 }

public String getEmpName(){
 return empName;
 }

public int getEmpAge(){
 return empAge;
}

public void setEmpAge(int newValue){

 empAge = newValue;
}

public void setEmpName(String newValue){

 empName = newValue;
}

public void setEmpSSN(int newValue){
 ssn = newValue;
 }

}

public class EncapsTest{

public static void main(String args[]){

 EncapsulationDemo obj = new EncapsulationDemo();

obj.setEmpName("Mario");

obj.setEmpAge(32);

obj.setEmpSSN(112233);

System.out.println("Employee Name: " + obj.getEmpName());

System.out.println("Employee SSN: " + obj.getEmpSSN());

System.out.println("Employee Age: " + obj.getEmpAge());

}

}

71

10

Output:

Employee Name: Mario

Employee SSN: 112233

Employee Age: 32

Advantages of encapsulation:

1. It improves maintainability and flexibility and re-usability

2. The fields can be made read-only (If we don’t define setter

methods in the class) or write-only (If we don’t define the getter

methods in the class).

3. User would not be knowing what is going on behind the scene.

72

